Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.483
Filtrar
1.
Nat Immunol ; 25(4): 598-606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565970

RESUMO

The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.


Assuntos
Transtornos do Neurodesenvolvimento , Neuroimunomodulação , Gravidez , Animais , Feminino , Camundongos , Transtornos do Neurodesenvolvimento/genética , Modelos Animais de Doenças
2.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599172

RESUMO

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Assuntos
Imunidade Inata , Células Receptoras Sensoriais , Imunidade Inata/fisiologia , Neuroimunomodulação/fisiologia , Homeostase
3.
Arch Virol ; 169(4): 73, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472498

RESUMO

Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4+ T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4+ T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4+ T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4+ T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4+ T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4+ T cell tolerance. CAP had a more significant regulatory effect on CD4+ T cells than on pDCs and was capable of inhibiting inflammation in these cells.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Humanos , Neuroimunomodulação , Regulação para Cima , Interferon-alfa/metabolismo , Diferenciação Celular , Infecções por Enterovirus/metabolismo , Linfócitos T CD4-Positivos , Células Dendríticas
4.
Exp Gerontol ; 189: 112407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522309

RESUMO

Vascular cognitive impairment (VCI) has become a common disease-causing cognitive deficit in humans, second only to Alzheimer's Disease (AD). Chuanzhitongluo capsule (CZTL) is a Traditional Chinese Medicine (TCM) preparation known for its effective protection against cerebral ischemia. However, its potential to ameliorate VCI remains unclear. This study aimed to investigate the cognitive improvement effects of CZTL in a mouse model of VCI. Chronic cerebral hypoperfusion (CCH) was induced in mice by bilateral common carotid artery stenosis (BCAS) to simulate the pathological changes associated with VCI. Spatial learning and memory abilities were assessed using the Morris Water Maze (MWM). RNA sequencing (RNA-Seq) was employed to identify differentially expressed genes (DEGs) in the hippocampus. Levels of inflammatory factors were measured through enzyme-linked immunosorbent assay (ELISA), while immunofluorescence (IF) determined the expression intensity of target proteins. Western Blot (WB) confirmed the final action pathway. Results indicated that CZTL significantly improved the spatial learning and memory abilities of CCH mice, along with alterations in gene expression profiles in the hippocampus. It also reduced neuroinflammation in the hippocampus and upregulated the choline acetyltransferase (ChAT) and α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR), which are in synaptic plasticity and neuronal development. Moreover, CZTL inhibited the NF-κB signaling pathway. In conclusion, CZTL may alleviate neuroinflammation induced by CCH and improve cognitive impairment in CCH mice by regulating the cholinergic anti-inflammatory pathway (CAIP) involving ChAT/α7nAChR/NF-κB.


Assuntos
Isquemia Encefálica , Estenose das Carótidas , Disfunção Cognitiva , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Neuroimunomodulação , Receptor Nicotínico de Acetilcolina alfa7 , Disfunção Cognitiva/complicações , Isquemia Encefálica/tratamento farmacológico , Estenose das Carótidas/complicações , Estenose das Carótidas/tratamento farmacológico
5.
Cell Calcium ; 119: 102870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531262

RESUMO

In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, ß- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.


Assuntos
Neuroimunomodulação , Dor , Canais de Cátion TRPV , Humanos , Cálcio/metabolismo , Capsaicina/farmacologia , Dor/metabolismo , Canais de Cátion TRPV/metabolismo , Animais
6.
Biomed Pharmacother ; 173: 116371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430631

RESUMO

Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.


Assuntos
Doenças Autoimunes , Doença de Hashimoto , Esclerose Múltipla , Humanos , Neuroimunomodulação , Autoimunidade , Células Matadoras Naturais
7.
Neuroimmunomodulation ; 31(1): 78-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527434

RESUMO

BACKGROUND: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. SUMMARY: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease. KEY MESSAGES: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.


Assuntos
Encéfalo , Doença de Chagas , Timo , Humanos , Doença de Chagas/imunologia , Doença de Chagas/fisiopatologia , Animais , Encéfalo/imunologia , Timo/imunologia , Timo/fisiologia , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/imunologia , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neuroimunomodulação/fisiologia , Neuroimunomodulação/imunologia , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo
8.
Neuroimmunomodulation ; 31(1): 66-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471475

RESUMO

BACKGROUND: Evolutionary medicine builds on evolutionary biology and explains why natural selection has left us vulnerable to disease. Unfortunately, several misunderstandings exist in the medical literature about the levels and mechanisms of evolution. Reasons for these problems start from the lack of teaching evolutionary biology in medical schools. A common mistake is to assume that "traits must benefit the species, as otherwise the species would have gone extinct in the past" confusing evolutionary history (phylogeny) with evolutionary function (fitness). SUMMARY: Here we summarise some basic aspects of evolutionary medicine by pointing out: (1) Evolution has no aim. (2) For adaptive evolution to occur, a trait does not have to be beneficial to its carrier throughout its entire life. (3) Not every single individual carrying an adaptive trait needs to have higher than average fitness. (4) Traits do not evolve for the benefit of the species. Using examples from the field of neuroimmunomodulation like sickness behaviour (nervous system), testosterone (hormones), and cytokines (immunity), we show how misconceptions arise from not differentiating between the explanatory categories of phylogeny (evolutionary history) and evolutionary function (fitness). KEY MESSAGES: Evolution has no aim but is an automatism that does not function for the benefit of the species. In evolution, successful individuals are those that maximise the transmission of their genes, and health and survival are just strategies to have the opportunity to do so. Thus, a trait enabling survival of the individual until reproductive age will spread even if at later age the same trait leads to disease and death. Natural and sexual selection do not select for traits that benefit the health or happiness of the individual, but for traits that increase inclusive fitness even if this increases human suffering. In contrast, our humane aim is to increase individual well-being. Evolutionary medicine can help us achieve this aim against evolutionary constraints.


Assuntos
Evolução Biológica , Neuroimunomodulação , Humanos , Neuroimunomodulação/fisiologia , Animais , Filogenia , Seleção Genética
9.
Proc Natl Acad Sci U S A ; 121(11): e2322574121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451947

RESUMO

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Neuroimunomodulação , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína 1 Modificadora da Atividade de Receptores/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Imunidade Adaptativa
10.
Hum Brain Mapp ; 45(2): e26615, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339956

RESUMO

Violence exposure is associated with worsening anxiety and depression symptoms among adolescents. Mechanistically, social defeat stress models in mice indicate that violence increases peripherally derived macrophages in threat appraisal regions of the brain, which have been causally linked to anxious behavior. In the present study, we investigate if there is a path connecting violence exposure with internalizing symptom severity through peripheral inflammation and amygdala connectivity. Two hundred and thirty-three adolescents, ages 12-15, from the Chicago area completed clinical assessments, immune assays and neuroimaging. A high-dimensional multimodal mediation model was fit, using violence exposure as the predictor, 12 immune variables as the first set of mediators and 288 amygdala connectivity variables as the second set, and internalizing symptoms as the primary outcome measure. 56.2% of the sample had been exposed to violence in their lifetime. Amygdala-hippocampus connectivity mediated the association between violence exposure and internalizing symptoms ( ζ ̂ Hipp π ̂ Hipp = 0.059 $$ {\hat{\zeta}}_{\mathrm{Hipp}}{\hat{\pi}}_{\mathrm{Hipp}}=0.059 $$ , 95 % CI boot = 0.009,0.134 $$ 95\%{\mathrm{CI}}_{\mathrm{boot}}=\left[\mathrm{0.009,0.134}\right] $$ ). There was no evidence that inflammation or inflammation and amygdala connectivity in tandem mediated the association. Considering the amygdala and the hippocampus work together to encode, consolidate, and retrieve contextual fear memories, violence exposure may be associated with greater connectivity between the amygdala and the hippocampus because it could be adaptive for the amygdala and the hippocampus to be in greater communication following violence exposure to facilitate evaluation of contextual threat cues. Therefore, chronic elevations of amygdala-hippocampal connectivity may indicate persistent vigilance that leads to internalizing symptoms.


Assuntos
Exposição à Violência , Neuroimunomodulação , Animais , Camundongos , Análise de Mediação , Imageamento por Ressonância Magnética/métodos , Inflamação/diagnóstico por imagem
11.
Chem Biodivers ; 21(4): e202400290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389159

RESUMO

Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.


Assuntos
Fator de Necrose Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Regulação para Cima , Lipopolissacarídeos/farmacologia , Neuroimunomodulação , Cumarínicos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
12.
Eur J Neurosci ; 59(8): 1977-1992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311960

RESUMO

In a great partnership, the Federation of European Neuroscience Societies (FENS) and the Hertie Foundation organized the FENS-Hertie 2022 Winter School on 'Neuro-immune interactions in health and disease'. The school selected 27 PhD students and 13 postdoctoral fellows from 20 countries and involved 14 faculty members experts in the field. The Winter School focused on a rising field of research, the interactions between the nervous and both innate and adaptive immune systems under pathological and physiological conditions. A fine-tuned neuro-immune crosstalk is fundamental for healthy development, while disrupted neuro-immune communication might play a role in neurodegeneration, neuroinflammation and aging. However, much is yet to be understood about the underlying mechanisms of these neuro-immune interactions in the healthy brain and under pathological scenarios. In addition to new findings in this emerging field, novel methodologies and animal models were presented to foment research on neuro-immunology. The FENS-Hertie 2022 Winter School provided an insightful knowledge exchange between students and faculty focusing on the latest discoveries in the biology of neuro-immune interactions while fostering great academic and professional opportunities for early-career neuroscientists from around the world.


Assuntos
Neuroimunomodulação , Neurociências , Animais , Humanos , Encéfalo , Instituições Acadêmicas , Envelhecimento
13.
J Allergy Clin Immunol ; 153(4): 924-938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373475

RESUMO

Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.


Assuntos
Citocinas , Células Receptoras Sensoriais , Humanos , Transdução de Sinais , Inflamação , Neuroimunomodulação/fisiologia
14.
Biochem Pharmacol ; 222: 116070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387528

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating sequela that is difficult for both clinicians and cancer patients to manage. Precise mechanisms of CIPN remain elusive and current clinically prescribed therapies for CIPN have limited efficacy. Recent studies have begun investigating the interactions between the peripheral and central nervous systems and the immune system. Understanding these neuroimmune interactions may shift the paradigm of elucidating CIPN mechanisms. Although the contribution of immune cells to CIPN pathogenesis represents a promising area of research, its fully defined mechanisms have not yet been established. Therefore, in this review, we will discuss (i) current shortcoming of CIPN treatments, (ii) the roles of neuroimmune interactions in CIPN development and (iii) potential neuroimmune interaction-targeting treatment strategies for CIPN. Interestingly, monocytes/macrophages in dorsal root ganglia; microglia and astrocytes in spinal cord; mast cells in skin; and Schwann cell near peripheral nerves have been identified as inducers of CIPN behaviors, whereas T cells have been found to contribute to CIPN resolution. Additionally, nerve-resident immune cells have been targeted as prevention and/or therapy for CIPN using traditional herbal medicines, small molecule inhibitors, and intravenous immunoglobulins in a preclinical setting. Overall, unveiling neuroimmune interactions associated with CIPN may ultimately reduce cancer mortality and improve cancer patients' quality of life.


Assuntos
Antineoplásicos , Neoplasias , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/efeitos adversos , Neuroimunomodulação , Qualidade de Vida , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Neoplasias/tratamento farmacológico
15.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339023

RESUMO

The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host-microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αß TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain.


Assuntos
Linfócitos T CD8-Positivos , Microbiota , Animais , Linfócitos T CD8-Positivos/metabolismo , Neuroimunomodulação , Mucosa Intestinal/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta , Homeostase , Mamíferos/metabolismo
16.
Respir Res ; 25(1): 83, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331782

RESUMO

Recent evidence has increasingly underscored the importance of the neuro-immune axis in mediating allergic airway diseases, such as allergic asthma and allergic rhinitis. The intimate spatial relationship between neurons and immune cells suggests that their interactions play a pivotal role in regulating allergic airway inflammation. Upon direct activation by allergens, neurons and immune cells engage in interactions, during which neurotransmitters and neuropeptides released by neurons modulate immune cell activity. Meanwhile, immune cells release inflammatory mediators such as histamine and cytokines, stimulating neurons and amplifying neuropeptide production, thereby exacerbating allergic inflammation. The dynamic interplay between the nervous and immune systems suggests that targeting the neuro-immune axis in the airway could represent a novel approach to treating allergic airway diseases. This review summarized recent evidence on the nervous system's regulatory mechanisms in immune responses and identified potential therapeutic targets along the peripheral nerve-immune axis for allergic asthma and allergic rhinitis. The findings will provide novel perspectives on the management of allergic airway diseases in the future.


Assuntos
Asma , Neuropeptídeos , Transtornos Respiratórios , Rinite Alérgica , Humanos , Neuroimunomodulação , Asma/tratamento farmacológico , Sistema Respiratório , Rinite Alérgica/tratamento farmacológico , Inflamação
18.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278026

RESUMO

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Assuntos
Doença de Alzheimer , Morfinanos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Neuroimunomodulação , Escopolamina/farmacologia , Inflamação/patologia , Homeostase , Encéfalo/metabolismo , Colinérgicos/farmacologia
19.
J Pathol ; 262(3): 362-376, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38229586

RESUMO

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies that arise from complex cellular interactions within the tissue microenvironment. Here, we sought to decipher tumor-derived signals from the surrounding microenvironment by applying digital spatial profiling (DSP) to hormone-secreting and non-functional GEP-NETs. By combining this approach with in vitro studies of human-derived organoids, we demonstrated the convergence of cell autonomous immune and pro-inflammatory proteins that suggests their role in neuroendocrine differentiation and tumorigenesis. DSP was used to evaluate the expression of 40 neural- and immune-related proteins in surgically resected duodenal and pancreatic NETs (n = 20) primarily consisting of gastrinomas (18/20). A total of 279 regions of interest were examined between tumors, adjacent normal and abnormal-appearing epithelium, and the surrounding stroma. The results were stratified by tissue type and multiple endocrine neoplasia I (MEN1) status, whereas protein expression was validated by immunohistochemistry (IHC). A tumor immune cell autonomous inflammatory signature was further evaluated by IHC and RNAscope, while functional pro-inflammatory signaling was confirmed using patient-derived duodenal organoids. Gastrin-secreting and non-functional pancreatic NETs showed a higher abundance of immune cell markers and immune infiltrate compared with duodenal gastrinomas. Compared with non-MEN1 tumors, MEN1 gastrinomas and preneoplastic lesions showed strong immune exclusion and upregulated expression of neuropathological proteins. Despite a paucity of immune cells, duodenal gastrinomas expressed the pro-inflammatory and pro-neural factor IL-17B. Treatment of human duodenal organoids with IL-17B activated NF-κB and STAT3 signaling and induced the expression of neuroendocrine markers. In conclusion, multiplexed spatial protein analysis identified tissue-specific neuro-immune signatures in GEP-NETs. Duodenal gastrinomas are characterized by an immunologically cold microenvironment that permits cellular reprogramming and neoplastic transformation of the preneoplastic epithelium. Moreover, duodenal gastrinomas cell autonomously express immune and pro-inflammatory factors, including tumor-derived IL-17B, that stimulate the neuroendocrine phenotype. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Duodenais , Gastrinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/patologia , Gastrinoma/genética , Gastrinoma/metabolismo , Gastrinoma/patologia , Neuroimunomodulação , Interleucina-17 , Neoplasias Duodenais/genética , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
20.
J Gastroenterol ; 59(3): 165-178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221552

RESUMO

Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.


Assuntos
Refluxo Gastroesofágico , Dor Visceral , Humanos , Neuroimunomodulação , Inibidores da Bomba de Prótons , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...